Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 9(1)2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383728

RESUMO

Fungi have an important role in nutrient cycling in most ecosystems on Earth, yet their ecology and functionality in deep continental subsurface remain unknown. Here, we report the first observations of active fungal colonization of mica schist in the deep continental biosphere and the ability of deep subsurface fungi to attach to rock surfaces under in situ conditions in groundwater at 500 and 967 m depth in Precambrian bedrock. We present an in situ subsurface biofilm trap, designed to reveal sessile microbial communities on rock surface in deep continental groundwater, using Outokumpu Deep Drill Hole, in eastern Finland, as a test site. The observed fungal phyla in Outokumpu subsurface were Basidiomycota, Ascomycota, and Mortierellomycota. In addition, significant proportion of the community represented unclassified Fungi. Sessile fungal communities on mica schist surfaces differed from the planktic fungal communities. The main bacterial phyla were Firmicutes, Proteobacteria, and Actinobacteriota. Biofilm formation on rock surfaces is a slow process and our results indicate that fungal and bacterial communities dominate the early surface attachment process, when pristine mineral surfaces are exposed to deep subsurface ecosystems. Various fungi showed statistically significant cross-kingdom correlation with both thiosulfate and sulfate reducing bacteria, e.g., SRB2 with fungi Debaryomyces hansenii.

2.
AMB Express ; 9(1): 124, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31385056

RESUMO

Xylanases are in important class of industrial enzymes that are essential for the complete hydrolysis of lignocellulosic biomass into fermentable sugars. In the present study, we report the cloning of novel xylanases with interesting properties from compost metagenomics libraries. Controlled composting of lignocellulosic materials was used to enrich the microbial population in lignocellulolytic organisms. DNA extracted from the compost samples was used to construct metagenomics libraries, which were screened for xylanase activity. In total, 40 clones exhibiting xylanase activity were identified and the thermostability of the discovered xylanases was assayed directly from the library clones. Five genes, including one belonging to the more rare family GH8, were selected for subcloning and the enzymes were expressed in recombinant form in E. coli. Preliminary characterization of the metagenome-derived xylanases revealed interesting properties of the novel enzymes, such as high thermostability and specific activity, and differences in hydrolysis profiles. One enzyme was found to perform better than a standard Trichoderma reesei xylanase in the hydrolysis of lignocellulose at elevated temperatures.

3.
FEMS Microbiol Ecol ; 94(8)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29893836

RESUMO

The diversity and metabolic functions of deep subsurface ecosystems remain relatively unexplored. Microbial communities in previously studied deep subsurface sites of the Fennoscandian Shield are distinctive to each site. Thus, we hypothesized that the microbial communities of the deep Archaean bedrock fracture aquifer in Romuvaara, northern Finland, differ both in community composition and metabolic functionality from the other sites in the Fennoscandian Shield. We characterized the composition, functionality and substrate preferences of the microbial communities at different depths in a 600 m deep borehole. In contrast to other Fennoscandian deep biosphere communities studied to date, iron-oxidizing Gallionella dominated the bacterial communities, while methanogenic and ammonia-oxidizing archaea were the most prominent archaea, and a diverse fungal community was also detected. Potential for methane cycling and sulfate and nitrate reduction was confirmed by detection of the functional genes of these metabolic pathways. Organotrophs were less abundant, although carbohydrates were the most preferred of the tested substrates. The microbial communities shared features with those detected from other deep groundwaters with similar geochemistry, but the majority of taxa distinctive to Romuvaara are different from the taxa previously detected in saline deep groundwater in the Fennoscandian Shield, most likely because of the differences in water chemistry.


Assuntos
Archaea/classificação , Bactérias/classificação , Fungos/classificação , Água Subterrânea/microbiologia , Microbiologia do Solo , Archaea/genética , Bactérias/genética , Ecossistema , Finlândia , Fungos/genética , Metano/metabolismo , Microbiota , Micobioma , Filogenia , Sulfatos/metabolismo
4.
Front Microbiol ; 8: 232, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28265265

RESUMO

Acetate plays a key role as electron donor and acceptor and serves as carbon source in oligotrophic deep subsurface environments. It can be produced from inorganic carbon by acetogenic microbes or through breakdown of more complex organic matter. Acetate is an important molecule for sulfate reducers that are substantially present in several deep bedrock environments. Aceticlastic methanogens use acetate as an electron donor and/or a carbon source. The goal of this study was to shed light on carbon cycling and competition in microbial communities in fracture fluids of Finnish crystalline bedrock groundwater system. Fracture fluid was anaerobically collected from a fracture zone at 967 m depth of the Outokumpu Deep Drill Hole and amended with acetate, acetate + sulfate, sulfate only or left unamended as a control and incubated up to 68 days. The headspace atmosphere of microcosms consisted of 80% hydrogen and 20% CO2. We studied the changes in the microbial communities with community fingerprinting technique as well as high-throughput 16S rRNA gene amplicon sequencing. The amended microcosms hosted more diverse bacterial communities compared to the intrinsic fracture zone community and the control treatment without amendments. The majority of the bacterial populations enriched with acetate belonged to clostridial hydrogenotrophic thiosulfate reducers and Alphaproteobacteria affiliating with groups earlier found from subsurface and groundwater environments. We detected a slight increase in the number of sulfate reducers after the 68 days of incubation. The microbial community changed significantly during the experiment, but increase in specifically acetate-cycling microbial groups was not observed.

5.
AIMS Microbiol ; 3(4): 846-871, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-31294193

RESUMO

Microbial communities in deep subsurface environments comprise a large portion of Earth's biomass, but the metabolic activities in these habitats are largely unknown. Here the effect of CO2 and carbonate on the microbial community of an isolated groundwater fracture zone at 180 m depth of the Outokumpu Deep Scientific Drill Hole (Finland) was tested. Outokumpu groundwater at 180 m depth contains approximately 0.45 L L-1 dissolved gas of which methane contributes 76%. CO2, on the other hand, is scarce. The number of microbial cells with intracellular activity in the groundwater was low when examined with redox staining. Fluorescence Assisted Cell Sorting (FACS) analyses indicated that only 1% of the microbial community stained active with the redox sensing dye in the untreated groundwater after 4 weeks of starvation. However, carbon substrate and sulfate addition increased the abundance of fluorescent cells up to 7%. CO2 and CO2 + sulfate activated the greatest number of microbes, especially increasing the abundance of Pseudomonas sp., which otherwise was present at only low abundance in Outokumpu. Over longer exposure time (2 months) up to 50% of the bacterial cells in the groundwater were shown to incorporate inorganic carbon from carbonate into biomass. Carbon recapture is an important feature in this ecosystem since it may decrease the rate of carbon loss in form of CO2 released from cellular processes.

6.
Front Microbiol ; 6: 1203, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26579109

RESUMO

Pyhäsalmi mine in central Finland provides an excellent opportunity to study microbial and geochemical processes in a deep subsurface crystalline rock environment through near-vertical drill holes that reach to a depth of more than two kilometers below the surface. However, microbial sampling was challenging in this high-pressure environment. Nucleic acid yields obtained were extremely low when compared to the cell counts detected (1.4 × 10(4) cells mL(-1)) in water. The water for nucleic acid analysis went through high decompression (60-130 bar) during sampling, whereas water samples for detection of cell counts by microscopy could be collected with slow decompression. No clear cells could be identified in water that went through high decompression. The high-pressure decompression may have damaged part of the cells and the nucleic acids escaped through the filter. The microbial diversity was analyzed from two drill holes by pyrosequencing amplicons of the bacterial and archaeal 16S rRNA genes and from the fungal ITS regions from both DNA and RNA fractions. The identified prokaryotic diversity was low, dominated by Firmicute, Beta- and Gammaproteobacteria species that are common in deep subsurface environments. The archaeal diversity consisted mainly of Methanobacteriales. Ascomycota dominated the fungal diversity and fungi were discovered to be active and to produce ribosomes in the deep oligotrophic biosphere. The deep fluids from the Pyhäsalmi mine shared several features with other deep Precambrian continental subsurface environments including saline, Ca-dominated water and stable isotope compositions positioning left from the meteoric water line. The dissolved gas phase was dominated by nitrogen but the gas composition clearly differed from that of atmospheric air. Despite carbon-poor conditions indicated by the lack of carbon-rich fracture fillings and only minor amounts of dissolved carbon detected in formation waters, some methane was found in the drill holes. No dramatic differences in gas compositions were observed between different gas sampling methods tested. For simple characterization of gas composition the most convenient way to collect samples is from free flowing fluid. However, compared to a pressurized method a relative decrease in the least soluble gases may appear.

7.
Biomed Res Int ; 2015: 979530, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26425566

RESUMO

Active microbial communities of deep crystalline bedrock fracture water were investigated from seven different boreholes in Olkiluoto (Western Finland) using bacterial and archaeal 16S rRNA, dsrB, and mcrA gene transcript targeted 454 pyrosequencing. Over a depth range of 296-798 m below ground surface the microbial communities changed according to depth, salinity gradient, and sulphate and methane concentrations. The highest bacterial diversity was observed in the sulphate-methane mixing zone (SMMZ) at 250-350 m depth, whereas archaeal diversity was highest in the lowest boundaries of the SMMZ. Sulphide-oxidizing ε-proteobacteria (Sulfurimonas sp.) dominated in the SMMZ and γ-proteobacteria (Pseudomonas spp.) below the SMMZ. The active archaeal communities consisted mostly of ANME-2D and Thermoplasmatales groups, although Methermicoccaceae, Methanobacteriaceae, and Thermoplasmatales (SAGMEG, TMG) were more common at 415-559 m depth. Typical indicator microorganisms for sulphate-methane transition zones in marine sediments, such as ANME-1 archaea, α-, ß- and δ-proteobacteria, JS1, Actinomycetes, Planctomycetes, Chloroflexi, and MBGB Crenarchaeota were detected at specific depths. DsrB genes were most numerous and most actively transcribed in the SMMZ while the mcrA gene concentration was highest in the deep methane rich groundwater. Our results demonstrate that active and highly diverse but sparse and stratified microbial communities inhabit the Fennoscandian deep bedrock ecosystems.


Assuntos
Bactérias/metabolismo , Ecossistema , Sedimentos Geológicos/microbiologia , Metano/metabolismo , Sulfatos/metabolismo , Bactérias/genética , Sequência de Bases , Finlândia , Água Subterrânea/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Ribossômico 16S/genética
8.
Front Microbiol ; 6: 573, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26106376

RESUMO

The diversity and functional role of fungi, one of the ecologically most important groups of eukaryotic microorganisms, remains largely unknown in deep biosphere environments. In this study we investigated fungal communities in packer-isolated bedrock fractures in Olkiluoto, Finland at depths ranging from 296 to 798 m below surface level. DNA- and cDNA-based high-throughput amplicon sequencing analysis of the fungal internal transcribed spacer (ITS) gene markers was used to examine the total fungal diversity and to identify the active members in deep fracture zones at different depths. Results showed that fungi were present in fracture zones at all depths and fungal diversity was higher than expected. Most of the observed fungal sequences belonged to the phylum Ascomycota. Phyla Basidiomycota and Chytridiomycota were only represented as a minor part of the fungal community. Dominating fungal classes in the deep bedrock aquifers were Sordariomycetes, Eurotiomycetes, and Dothideomycetes from the Ascomycota phylum and classes Microbotryomycetes and Tremellomycetes from the Basidiomycota phylum, which are the most frequently detected fungal taxa reported also from deep sea environments. In addition some fungal sequences represented potentially novel fungal species. Active fungi were detected in most of the fracture zones, which proves that fungi are able to maintain cellular activity in these oligotrophic conditions. Possible roles of fungi and their origin in deep bedrock groundwater can only be speculated in the light of current knowledge but some species may be specifically adapted to deep subsurface environment and may play important roles in the utilization and recycling of nutrients and thus sustaining the deep subsurface microbial community.

9.
Microb Ecol ; 69(2): 319-32, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25260922

RESUMO

The deep subsurface hosts diverse life, but the mechanisms that sustain this diversity remain elusive. Here, we studied microbial communities involved in carbon cycling in deep, dark biosphere and identified anaerobic microbial energy production mechanisms from groundwater of Fennoscandian crystalline bedrock sampled from a deep drill hole in Outokumpu, Finland, by using molecular biological analyses. Carbon cycling pathways, such as carbon assimilation, methane production and methane consumption, were studied with cbbM, rbcL, acsB, accC, mcrA and pmoA marker genes, respectively. Energy sources, i.e. the terminal electron accepting processes of sulphate-reducing and nitrate-reducing communities, were assessed with detection of marker genes dsrB and narG, respectively. While organic carbon is scarce in deep subsurface, the main carbon source for microbes has been hypothesized to be inorganic carbon dioxide. However, our results demonstrate that carbon assimilation is performed throughout the Outokumpu deep scientific drill hole water column by mainly heterotrophic microorganisms such as Clostridia. The source of carbon for the heterotrophic microbial metabolism is likely the Outokumpu bedrock, mainly composed of serpentinites and metasediments with black schist interlayers. In addition to organotrophic metabolism, nitrate and sulphate are other possible energy sources. Methanogenic and methanotrophic microorganisms are scarce, but our analyses suggest that the Outokumpu deep biosphere provides niches for these organisms; however, they are not very abundant.


Assuntos
Bactérias/classificação , Carbono/química , Processos Heterotróficos , Filogenia , Microbiologia do Solo , Bactérias/genética , Bactérias/isolamento & purificação , Ciclo do Carbono , Clonagem Molecular , DNA Bacteriano/genética , Finlândia , Biblioteca Gênica , Genes Bacterianos , Marcadores Genéticos , Metano/metabolismo , Ciclo do Nitrogênio , Filogeografia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
10.
Microorganisms ; 3(1): 17-33, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-27682076

RESUMO

Microorganisms in the deep biosphere are believed to conduct little metabolic activity due to low nutrient availability in these environments. However, destructive penetration to long-isolated bedrock environments during construction of underground waste repositories can lead to increased nutrient availability and potentially affect the long-term stability of the repository systems, Here, we studied how microorganisms present in fracture fluid from a depth of 500 m in Outokumpu, Finland, respond to simple carbon compounds (C-1 compounds) in the presence or absence of sulphate as an electron acceptor. C-1 compounds such as methane and methanol are important intermediates in the deep subsurface carbon cycle, and electron acceptors such as sulphate are critical components of oxidation processes. Fracture fluid samples were incubated in vitro with either methane or methanol in the presence or absence of sulphate as an electron acceptor. Metabolic response was measured by staining the microbial cells with fluorescent dyes that indicate metabolic activity and transcriptional response with RT-qPCR. Our results show that deep subsurface microbes exist in dormant states but rapidly reactivate their transcription and respiration systems in the presence of C-1 substrates, particularly methane. Microbial activity was further enhanced by the addition of sulphate as an electron acceptor. Sulphate- and nitrate-reducing microbes were particularly responsive to the addition of C-1 compounds and sulphate. These taxa are common in deep biosphere environments and may be affected by conditions disturbed by bedrock intrusion, as from drilling and excavation for long-term storage of hazardous waste.

11.
ISME J ; 8(1): 126-38, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23949662

RESUMO

Microbial life in the nutrient-limited and low-permeability continental crystalline crust is abundant but remains relatively unexplored. Using high-throughput sequencing to assess the 16S rRNA gene diversity, we found diverse bacterial and archaeal communities along a 2516-m-deep drill hole in continental crystalline crust in Outokumpu, Finland. These communities varied at different sampling depths in response to prevailing lithology and hydrogeochemistry. Further analysis by shotgun metagenomic sequencing revealed variable carbon and nutrient utilization strategies as well as specific functional and physiological adaptations uniquely associated with specific environmental conditions. Altogether, our results show that predominant geological and hydrogeochemical conditions, including the existence and connectivity of fracture systems and the low amounts of available energy, have a key role in controlling microbial ecology and evolution in the nutrient and energy-poor deep crustal biosphere.


Assuntos
Archaea/fisiologia , Fenômenos Fisiológicos Bacterianos , Biodiversidade , Microbiologia do Solo , Adaptação Fisiológica/genética , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Bactérias/virologia , Bacteriófagos/genética , Ciclo do Carbono , Finlândia , Geologia , Metagenômica , RNA Ribossômico 16S/genética , Solo/química , Água/química
12.
FEMS Microbiol Ecol ; 85(2): 324-37, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23560597

RESUMO

Deep fracture zones in Finnish crystalline bedrock have been isolated for long, the oldest fluids being tens of millions of years old. To accurately measure the native microbial diversity in fracture-zone fluids, water samples were obtained by isolating the borehole fraction spanning a deep subsurface aquifer fracture zone with inflatable packers (500 and 967 m) or by pumping fluids directly from the fracture zone. Sampling frequency was examined to establish the time required for the space between packers to be flushed and replaced by indigenous fracture fluids. Chemical parameters of the fluid were monitored continuously, and samples were taken at three points during the flushing process. Microbial communities were characterized by comparison of 16S ribosomal genes and transcripts and quantification of dsrB (dissimilatory sulfate reduction) gene. Results suggest that fracture-zones host microbial communities with fewer cells and lower diversity than those in the drill hole prior to flushing. In addition, each fracture zone showed a community composition distinct from that inhabiting the drill hole at corresponding depth. The highest diversity was detected from the 967-m fracture zone. We conclude that the applied packer method can successfully isolate and sample authentic microbial fracture-zone communities of deep bedrock environments.


Assuntos
Bactérias/classificação , Água Subterrânea/microbiologia , Archaea/classificação , Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Bactérias/metabolismo , Água Subterrânea/química , Hidrologia , Filogenia , RNA Ribossômico 16S/genética , Sulfatos/metabolismo , Microbiologia da Água
13.
Waste Manag ; 33(6): 1451-60, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23540356

RESUMO

The quality of sewage sludge-based products, such as composts and growth media, is affected by the contamination of sewage sludge with, potentially, hundreds of different substances. Therefore, it is difficult to achieve the reliable environmental quality assessment of sewage sludge-based products solely based on chemical analysis. In the present work, we demonstrate the use of the kinetic luminescent bacteria test (ISO 21338) to evaluate acute toxicity and the Vitotox™ test to monitor genotoxicity of sewage sludge and composted sewages sludge. In addition, endocrine-disrupting and dioxin-like activity was studied using yeast-cell-based assays. The relative contribution of industrial waste water treated at the Waste Water Treatment Plants led to elevated concentrations of polyaromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and polychlorinated dibenzo-p-dioxins and -furans (PCDD/F) in sewage sludge. The effect of elevated amounts of organic contaminants could also be identified with biotests able to demonstrate higher acute toxicity, genotoxicity, and potential for endocrine-disruptive properties. Additional extraction steps in kinetic luminescent bacteria test with DMSO and hexane increased the level of toxicity detected. Composting in a pilot-scale efficiently reduced the amounts of linear alkylbenzensulphonates (LASs), nonylphenols and nonylphenolethoxylates (NPE/NPs) and PAH with relative removal efficiencies of 84%, 61% and 56%. In addition, decrease in acute toxicity, genotoxicity and endocrorine-disrupting and dioxin-like activity during composting could be detected. However, the biotests did have limitations in accessing the ecotoxicity of test media rich with organic matter, such as sewage sludge and compost, and effects of sample characteristics on biotest organisms must be acknowledged. The compost matrix itself, however, which contained a high amount of nutrients, bark, and peat, reduced the sensitivity of the genotoxicity tests and yeast bioreporter assays.


Assuntos
Esgotos , Solo , Testes de Toxicidade/métodos , Poluentes Químicos da Água/toxicidade , Aliivibrio fischeri/efeitos dos fármacos , Benzofuranos/análise , Benzofuranos/toxicidade , Dibenzofuranos Policlorados , Dioxinas/análise , Dioxinas/toxicidade , Ecotoxicologia/métodos , Disruptores Endócrinos/análise , Disruptores Endócrinos/toxicidade , Medições Luminescentes , Testes de Mutagenicidade , Bifenilos Policlorados/análise , Bifenilos Policlorados/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Esgotos/análise , Esgotos/química , Testes de Toxicidade Aguda/métodos , Poluentes Químicos da Água/análise , Leveduras/efeitos dos fármacos
14.
FEMS Microbiol Ecol ; 77(2): 295-309, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21488910

RESUMO

This paper demonstrates the first microbiological sampling of the Outokumpu deep borehole (2516 m deep) aiming at characterizing the bacterial community composition and diversity of sulphate-reducing bacteria (SRB) in Finnish crystalline bedrock aquifers. Sampling was performed using a 1500-m-long pressure-tight tube that provided 15 subsamples, each corresponding to a 100-m section down the borehole. Microbial density measurements, as well as community fingerprinting with 16S rRNA gene-based denaturing gradient gel electrophoresis, demonstrated that microbial communities in the borehole water varied as a function of sampling depth. In the upper part of the borehole, bacteria affiliated to the family Comamonadaceae dominated the bacterial community. Further down the borehole, bacteria affiliated to the class Firmicutes became more prominent and, according to 16S rRNA gene clone libraries, dominated the bacterial community at 1400-1500 m. In addition, the largest number of bacterial classes was observed at 1400-1500 m. The dsrB genes detected in the upper part of the borehole were more similar to the dsrB genes of cultured SRBs, such as the genus Desulfotomaculum, whereas in the deeper parts of the borehole, the dsrB genes were more closely related to the uncultured bacteria that have been detected earlier in deep earth crust aquifers.


Assuntos
Biodiversidade , Bactérias Redutoras de Enxofre/classificação , Microbiologia da Água , Água/química , Técnicas Bacteriológicas , Contagem de Colônia Microbiana , DNA Bacteriano/genética , Finlândia , Biblioteca Gênica , Filogenia , RNA Ribossômico 16S/genética , Bactérias Redutoras de Enxofre/genética , Bactérias Redutoras de Enxofre/isolamento & purificação
15.
Appl Microbiol Biotechnol ; 84(1): 169-82, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19458949

RESUMO

A small-scale functional gene array containing 15 functional gene probes targeting aliphatic and aromatic hydrocarbon biodegradation pathways was used to investigate the effect of a pilot-scale air sparging and nutrient infiltration treatment on hydrocarbon biodegradation in creosote-contaminated groundwater. Genes involved in the different phases of polycyclic aromatic hydrocarbon (PAH) biodegradation were detected with the functional gene array in the contaminant plume, thus indicating the presence of intrinsic biodegradation potential. However, the low aerobic fluorescein diacetate hydrolysis, the polymerase chain reaction (PCR) amplification of 16S rRNA genes closely similar to sulphate-reducing and denitrifying bacteria and the negligible decrease in contaminant concentrations showed that aerobic PAH biodegradation was limited in the anoxic groundwater. Increased abundance of PAH biodegradation genes was detected by functional gene array in the monitoring well located at the rear end of the biostimulated area, which indicated that air sparging and nutrient infiltration enhanced the intrinsic, aerobic PAH biodegradation. Furthermore, ten times higher naphthalene dioxygenase gene copy numbers were detected by real-time PCR in the biostimulated area, which was in good agreement with the functional gene array data. As a result, functional gene array analysis was demonstrated to provide a potential tool for evaluating the efficiency of the bioremediation treatment for enhancing hydrocarbon biodegradation in field-scale applications.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/genética , Creosoto/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Poluentes Químicos da Água/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Creosoto/química , Dados de Sequência Molecular , Filogenia , Hidrocarbonetos Policíclicos Aromáticos/química , Poluentes Químicos da Água/química
16.
Biodegradation ; 19(6): 883-95, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18425625

RESUMO

Various microbial activities determine the effectiveness of bioremediation processes. In this work, we evaluated the feasibility of gene array hybridization for monitoring the efficiency of biodegradation processes. Biodegradation of 14C-labelled naphthalene and toluene by the aromatic hydrocarbon-degrading Pseudomonas putida F1, P. putida mt-2 and P. putida G7 was followed in mixed liquid culture microcosm by a preliminary, nylon membrane-based gene array. In the beginning of the study, toluene was degraded rapidly and increased amount of toluene degradation genes was detected by the preliminary gene array developed for the study. After toluene was degraded, naphthalene mineralization started and the amount of naphthalene degradation genes increased as biodegradation proceeded. The amount of toluene degradation genes decreased towards the end of the study. The hybridization signal intensities determined by preliminary gene array were in good agreement with mineralization of naphthalene and toluene and with the amount of naphthalene dioxygenase and toluene dioxygenase genes quantified by dot blot hybridization. The clear correlation between the results obtained by the preliminary array and the biodegradation process suggests that gene array methods can be considered as a promising tool for monitoring the efficiency of biodegradation processes.


Assuntos
Genes Bacterianos , Naftalenos/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Tolueno/metabolismo , Sequência de Bases , Biodegradação Ambiental , Primers do DNA/genética , DNA Bacteriano/genética , Dioxigenases , Poluentes Ambientais/metabolismo , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Oxigenases/genética , Oxigenases/metabolismo
17.
Environ Pollut ; 154(2): 192-202, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18037200

RESUMO

The development of biological treatment technologies for contaminated environments requires tools for obtaining direct information about the biodegradation of specific contaminants. The potential of functional gene array analysis to monitor changes in the amount of functional marker genes as indicators of contaminant biodegradation was investigated. A prototype functional gene array was developed for targeting key functions in the biodegradation of naphthalene, toluene and xylenes. Internal standard probe based normalization was introduced to facilitate comparison across multiple samples. Coupled with one-colour hybridization, the signal normalization improved the consistency among replicate hybridizations resulting in better discrimination for the differences in the amount of target DNA. During the naphthalene biodegradation in a PAH-contaminated soil slurry microcosm, the normalized hybridization signals in naphthalene catabolic gene probes were in good agreement with the amount of naphthalene-degradation genes and the production of 14CO2. Gene arrays provide efficient means for monitoring of contaminant biodegradation in the environment.


Assuntos
Bactérias/metabolismo , Genes Bacterianos , Hidrocarbonetos Aromáticos/metabolismo , Microbiologia do Solo , Bactérias/genética , Biodegradação Ambiental , Ecologia/métodos , Monitoramento Ambiental/métodos , Perfilação da Expressão Gênica/métodos , Naftalenos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Poluentes do Solo/metabolismo
18.
Microb Ecol ; 52(3): 533-43, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17013553

RESUMO

A quantitative real-time polymerase chain reaction (PCR) assay was developed for monitoring naphthalene degradation during bioremediation processes. The phylogenetic affiliations of known naphthalene-hydroxylating dioxygenase genes were determined to target functionally related bacteria, and degenerate primers were designed on the basis of the close relationships among dioxygenase genes identified from naphthalene-degrading Proteobacteria. Evaluation of the amplification specificity demonstrated that the developed real-time PCR assay represents a rapid, precise means for the group-specific enumeration of naphthalene-degrading bacteria. According to validation with bacterial pure cultures, the assay discriminated between the targeted group of naphthalene dioxygenase sequences and genes in other naphthalene or aromatic hydrocarbon-degrading bacterial strains. Specific amplification of gene fragments sharing a high sequence similarity with the genes included in the assay design was also observed in soil samples recovered from large-scale remediation processes. The target genes could be quantified reproducibly at over five orders of magnitude down to 3 x 10(2) gene copies. To investigate the suitability of the assay in monitoring naphthalene biodegradation, the assay was applied in enumerating the naphthalene dioxygenase genes in a soil slurry microcosm. The results were in good agreement with contaminant mineralization and dot blot quantification of nahAc gene copies. Furthermore, the real-time PCR assay was found to be more sensitive than hybridization-based analysis.


Assuntos
Complexos Multienzimáticos/genética , Naftalenos/metabolismo , Oxigenases/genética , Reação em Cadeia da Polimerase/métodos , Proteobactérias/enzimologia , Biodegradação Ambiental , Dioxigenases , Monitoramento Ambiental , Amplificação de Genes , Hidroxilação , Complexos Multienzimáticos/metabolismo , Oxigenases/metabolismo , Filogenia , Proteobactérias/classificação , Proteobactérias/genética , Proteobactérias/metabolismo , Sensibilidade e Especificidade , Alinhamento de Sequência , Microbiologia do Solo , Poluentes do Solo/metabolismo , Especificidade da Espécie
19.
J Environ Qual ; 35(2): 516-21, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16455852

RESUMO

Concentration of low-weight carboxylic acids (LWCA) is one of the important parameters that should be taken into consideration when compost is applied as soil improver for plant cultivation, because high amounts of LWCA can be toxic to plants. The present work describes a method for analysis of LWCA in compost as a useful tool for monitoring compost quality and safety. The method was tested on compost samples of two different ages: 3 (immature) and 6 (mature) months old. Acids from compost samples were extracted at high pH, filtered, and freeze-dried. The dried sodium salts were derivatized with a sulfuric acid-methanol mixture and concentrations of 11 low-weight fatty acids (C1-C10) were analyzed using headspace gas chromatography. The material was analyzed with two analytical techniques: the external calibration method (tested on 11 LWCA) and the standard addition method (tested only on formic, acetic, propionic, butyric, and iso-butyric acids). The two techniques were compared for efficiency of acids quantification. The method allowed good separation and quantification of a wide range of individual acids with high sensitivity at low concentrations. Detection limit for propionic, butyric, caproic, caprylic, and capric acids was 1 mg kg(-1) compost; for formic, acetic, valeric, enanthoic and pelargonic acids it was 5 mg kg(-1) compost; and for iso-butyric acid it was 10 mg kg(-1) compost. Recovery rates of LWCA were higher in 3-mo-old compost (57-99%) than in 6-mo-old compost (29-45%). In comparison with the external calibration technique the standard addition technique proved to be three to four times more precise for older compost and two times for younger compost. Disadvantages of the standard addition technique are that it is more time demanding and laborious.


Assuntos
Ácidos Carboxílicos/análise , Solo/análise , Calibragem , Cromatografia Gasosa , Lepidium/crescimento & desenvolvimento
20.
Chemosphere ; 63(9): 1436-42, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16297428

RESUMO

Toxicity of two azo dyes (Reactive Orange 16 (RO16); Congo Red (CR)) and two anthraquinone dyes (Remazol Brilliant Blue R (RBBR); Disperse Blue 3 (DB3)) were compared using bacterium Vibrio fischeri, microalga Selenastrum capricornutum and ciliate Tetrahymena pyriformis. The following respective endpoints were involved: acute toxicity measured as bacterial luminescence inhibition, algal growth inhibition, and the effects on the protozoa including viability, growth inhibition, grazing effect and morphometric effects. In addition, mutagenicity of the dyes was determined using Ames test with bacterium Salmonella typhimurium His(-). DB3 dye was the most toxic of all dyes in the bacterial, algal and protozoan tests. In contrast to other dyes, DB3 exhibited mutagenic effects after metabolic activation in vitro in all S. typhimurium strains used. Of the methods applied, the algal test was the most sensitive to evaluate toxicity of the dyes tested.


Assuntos
Aliivibrio fischeri/efeitos dos fármacos , Clorófitas/efeitos dos fármacos , Corantes/toxicidade , Tetrahymena pyriformis/efeitos dos fármacos , Testes de Toxicidade/métodos , Animais , Antraquinonas/toxicidade , Compostos Azo/toxicidade , Vermelho Congo/toxicidade , Cinética , Testes de Mutagenicidade/métodos , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...